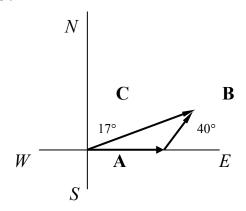

Appendix C

E1:

scale: ---=10 m


vector $\mathbf{A} = 20 \text{ m}$, East

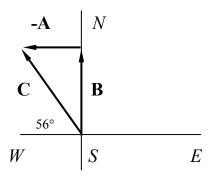
vector $\mathbf{B} = 30 \text{ m}$, North

vector $\mathbf{C} = \mathbf{A} + \mathbf{B}$

vector C = 36 m at 56° North of East

E3:

scale: $-= 1 \text{ m/s}^2$


vector $\mathbf{A} = 4 \text{ m/s}^2$ due East

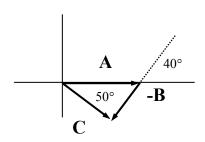
vector $\mathbf{B} = 3 \text{ m/s}^2$ at 40° North of East

vector $\mathbf{C} = \mathbf{A} + \mathbf{B}$

vector $\mathbf{C} = 6.6 \text{ m/s}^2 \text{ at } \sim 17^{\circ} \text{ North of East}$

E5:

scale: --=10 m


vector A = -A from E1, 20 m, West

vector $\mathbf{B} = 30 \text{ m}$, North

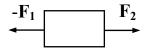
vector C = B - A = B + (-A)

vector C = 36 m at 56° North of West

E8:

vector
$$\mathbf{C} = \mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$$

vector $C = 3.6 \text{ m/s}^2 \text{ at } \sim 50^{\circ} \text{ South of East}$


Ch. 4:

Q7:

The more massive object will have a smaller acceleration because a = F/m

Q9:

No. If
$$\mathbf{F}_1 = \mathbf{F}_2$$
, $F_1 - F_2 = 0$, $a = F/m = 0/m = 0$

Q10:

Yes, it is possible. If the total force acting on the object is equal zero, this object can be at the rest or moves without acceleration.

E1:

$$a = F/m = (40 \text{ N})/(5 \text{ kg}) = 8 \text{ m/s}^2$$

E7:

$$F_{total} = F_1 - F_2 = F_1 - F_2 = 50 N - 30 N = 20 N,$$

 $a = (F_{total})/m$, hence $m = (F_{total})/a = (20 N)/(4 m/s^2) = 5 kg$

E8:

$$F_{total} = F_1 + F_2 + F_3 = F_1 + F_2 - F_3 = 5 N + 25 N - 10 N = 20 N$$

 $a = (F_{total})/m = (20 N)/(5 kg) = 4 m/s^2$